Issue 55, 2021, Issue in Progress

Aggregation of retained helium and hydrogen in titanium beryllide Be12Ti: a first-principles study

Abstract

Titanium beryllide, Be12Ti, has been proposed as a prospective neutron multiplier in fusion reactors. First-principles calculations have been performed to investigate the nucleation mechanism of a He bubble in bulk Be12Ti. Meanwhile, the influence of the presence of H atoms on the nucleation of the He bubble, i.e., the synergistic effect of He and H atoms, has also been investigated. It has been found that the He bubble will initially nucleate around a monovacancy (VBe2). When more He atoms have been implanted, two newly induced vacancies (VBe1 and VBe3) could be successively observed. The nucleation of the He bubble will occur around the divacancy of VBe2VBe1 and the trivacancy of VBe2VBe1VBe3. Dumbbell structures in the He bubble evolve with the number of implanted He atoms and finally disappear. The presence of H atoms will significantly influence the nucleation of the He bubble. It is interesting that some tetrahedral and octahedral structures have also been observed. The maximal number of H atoms trapped by a He bubble has been obtained. These phenomena could be further explained by the continuous shrinking of the isosurface of charge density. The present results provide a microscopic physical foundation to understand the mechanism of He and H atoms retention in neutron multiplier materials. This investigation could be helpful for the design and fabrication of more promising beryllides which could withstand a severe external environment.

Graphical abstract: Aggregation of retained helium and hydrogen in titanium beryllide Be12Ti: a first-principles study

Article information

Article type
Paper
Submitted
19 Sep 2021
Accepted
01 Oct 2021
First published
27 Oct 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 34860-34869

Aggregation of retained helium and hydrogen in titanium beryllide Be12Ti: a first-principles study

Y. Wang, C. Wang, Z. Meng, J. Liu, Y. Li and L. Yang, RSC Adv., 2021, 11, 34860 DOI: 10.1039/D1RA07023A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements