Issue 56, 2021

1,4,5,8-Naphthalene tetracarboxylate dianhydride/g-C3N4 van der Waals heterojunctions exhibit enhanced photochemical H2O2 production and antimicrobial activity

Abstract

Organic semiconductors, including graphitic carbon nitride (g-C3N4, CN), represent an important class of materials for the development of novel antimicrobial or biomedical technologies. Of principal interest is the ability of these materials to catalyze the reduction of elemental oxygen to generate reactive oxygen species (ROS), including hydrogen peroxide (H2O2). Here, we describe the fabrication of photoactive van der Waals heterojunctions incorporating 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTCDA) and CN. The composite heterojunction systems were characterized by a combination of physical (TEM, SEM, pXRD), spectroscopic (FT-IR, XPS, DRUV, photoluminescence, TCSPC) and kinetic experiments. Electronic interactions between the two components of the heterojunction increase the rate of photochemical production of H2O2 from elemental oxygen by 410%, relative to samples of pure CN. Mechanistic analysis reveals that interaction of NTCDA with the surface of CN modifies the mechanism of H2O2 formation in the heterojunction photocatalysts. The photochemical production of H2O2 by irradiation of the most active heterojunction composition is sufficient to reduce the viability of E. coli O157:H7, S. aureus and Ps. aeruginosa PAO1 by 99%. Importantly, H2O2 production by the NTCDA/CN heterojunctions suppresses Ps. aeruginosa biofilm formation, even at light exposure doses that had a lesser impact on overall planktonic cell growth.

Graphical abstract: 1,4,5,8-Naphthalene tetracarboxylate dianhydride/g-C3N4 van der Waals heterojunctions exhibit enhanced photochemical H2O2 production and antimicrobial activity

Supplementary files

Article information

Article type
Paper
Submitted
08 Oct 2021
Accepted
25 Oct 2021
First published
03 Nov 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 35425-35435

1,4,5,8-Naphthalene tetracarboxylate dianhydride/g-C3N4 van der Waals heterojunctions exhibit enhanced photochemical H2O2 production and antimicrobial activity

J. H. Thurston, M. Vitale-Sullivan, A. Koshkimbayeva, T. R. Smith and K. A. Cornell, RSC Adv., 2021, 11, 35425 DOI: 10.1039/D1RA07473C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements