Issue 61, 2021, Issue in Progress

Electrochemical properties of kenaf-based activated carbon monolith for supercapacitor electrode applications

Abstract

Activated carbon monoliths of kenaf (ACMKs) were prepared by moulding kenaf fibers into a column-shape monolith and then carrying out pyrolysis at 500, 600, 700 or 800 °C, followed by activation with KOH at 700 °C. Then, the sample was characterized using thermogravimetric analyzer (TGA), field-emission scanning electron microscopy (FE-SEM), field-emission transmission electron microscopy (FE-TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD) and N2 sorption instruments. The prepared ACMK was subjected to electrochemical property evaluation via cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS). The GCD study using a three-electrode system showed that the specific capacitance decreased with higher pyrolysis temperature (PYT) with the ACMK pyrolyzed at 500 °C (ACMK-500) exhibiting the highest specific capacitance of 217 F g−1. A two-electrode system provided 95.9% retention upon a 5000 cycle test as well as the specific capacitance of 212 F g−1, being converted to an energy density of 6 W h kg−1 at a power density of 215 W kg−1.

Graphical abstract: Electrochemical properties of kenaf-based activated carbon monolith for supercapacitor electrode applications

Supplementary files

Article information

Article type
Paper
Submitted
22 Oct 2021
Accepted
22 Nov 2021
First published
30 Nov 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 38515-38522

Electrochemical properties of kenaf-based activated carbon monolith for supercapacitor electrode applications

H. Y. Park, M. Huang, T. Yoon and K. H. Song, RSC Adv., 2021, 11, 38515 DOI: 10.1039/D1RA07815A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements