Issue 3, 2021

The role of gas flow distributions on CO2 mineralization within monolithic cemented composites: coupled CFD-factorial design approach

Abstract

The carbonation kinetics of monolithic cementing composites are strongly affected by gas transport which is, in turn, influenced by microstructural resistances and the presence of liquid water within pore networks. The non-uniform gas flow distribution within the CO2 mineralization reactor can impart mass transfer resistance in the monolith microstructure, which affects the uptake of CO2 (“carbonation”) of the cementing composites. This paper demonstrates how the gas spatial distribution (velocity and flow rate; quantified by CFD analysis) and processing conditions (temperature, relative humidity, and flow rate; quantified by factorial design) affect drying and carbonation, and in turn, the engineering properties of a representative ‘monolithic’ carbonate-cemented concrete component (i.e., herein concrete masonry unit: CMUs, also known as concrete block). It is shown that the gas flow distribution affects drying front penetration and results in moisture and carbonation gradients within the monolith. Particularly, variations in drying kinetics caused by non-uniformity of the contacting gas velocity impose gradients in moisture saturation, which results in increasing microstructural resistance to CO2 transport. The resultant non-uniform carbonate-mineral formation (i.e., carbonate cementation), if not controlled, can produce gradients in mechanical properties and may alter failure patterns upon loading. These insights inform the optimal design of gas flow distribution systems and processing conditions within CO2 mineralization reactors for the manufacturing of low-CO2 concrete components using CO2-dilute industrial flue gas streams.

Graphical abstract: The role of gas flow distributions on CO2 mineralization within monolithic cemented composites: coupled CFD-factorial design approach

Supplementary files

Article information

Article type
Paper
Submitted
12 Nov 2020
Accepted
11 Jan 2021
First published
11 Jan 2021

React. Chem. Eng., 2021,6, 494-504

Author version available

The role of gas flow distributions on CO2 mineralization within monolithic cemented composites: coupled CFD-factorial design approach

I. Mehdipour, G. Falzone, D. Prentice, N. Neithalath, D. Simonetti and G. Sant, React. Chem. Eng., 2021, 6, 494 DOI: 10.1039/D0RE00433B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements