Issue 11, 2021

Growth of Au nanoparticles on phosphorylated zein protein particles for use as biomimetic catalysts for cascade reactions at the oil–water interface

Abstract

Chemo-enzymatic cascade processes are invaluable due to their ability to rapidly construct high-value products from available feedstock chemicals in a one-pot relay manner. However, they have proven to be challenging because of the mutual inactivation of both catalysts. A conceptually novel strategy based on Pickering interfacial catalysis (PIC) is proposed here to address this challenge. This study aimed to construct a protein-stabilized Pickering system for biphasic cascade catalysis, enabled by phosphorylated zein nanoparticles (ZCPOPs) immobilized in gold nanoparticles (Au NCs). Ultra-small Au NCs, 1–2 nm in diameter, were integrated into ZCPOPs at room temperature. Then, the as-synthesized ZCPOPs–Au NCs were used to stabilize the oil-in-water (o/w) Pickering emulsion. Besides their excellent catalytic activity and recycling ability in a variety of oil phases, ZCPOPs–Au NCs possess unpredictable catalytic activity and exhibit mimicking properties of horseradish peroxidase. Particularly, the cascade reaction is well achieved using a metal catalyst and a biocatalyst at the oil–water interface. The result showed that such a combination of chemo- and biocatalysis improved the catalytic yield more than two times compared with that of sole metal catalysis. This study opened a new avenue to design nanomaterials using the combination of chemo- and biocatalysis in a Pickering emulsion system for multistep syntheses.

Graphical abstract: Growth of Au nanoparticles on phosphorylated zein protein particles for use as biomimetic catalysts for cascade reactions at the oil–water interface

Supplementary files

Article information

Article type
Edge Article
Submitted
05 Dec 2020
Accepted
16 Feb 2021
First published
17 Feb 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 3885-3889

Growth of Au nanoparticles on phosphorylated zein protein particles for use as biomimetic catalysts for cascade reactions at the oil–water interface

Y. Xi, B. Liu, S. Wang, X. Huang, H. Jiang, S. Yin, T. Ngai and X. Yang, Chem. Sci., 2021, 12, 3885 DOI: 10.1039/D0SC06649D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements