Issue 19, 2021

Exploring Cu/Al cluster growth and reactivity: from embryonic building blocks to intermetalloid, open-shell superatoms

Abstract

Cluster growth reactions in the system [Cu5](Mes)5 + [Al4](Cp*)4 (Mes = mesitylene, Cp* = pentamethylcyclopentadiene) were explored and monitored by in situ LIFDI-MS and 1H-NMR. Feedback into experimental design allowed for an informed choice and precise adjustment of reaction conditions and led to isolation of the intermetallic cluster [Cu4Al4](Cp*)5(Mes) (1). Cluster 1 reacts with excess 3-hexyne to yield the triangular cluster [Cu2Al](Cp*)3 (2). The two embryonic [Cu4Al4](Cp*)5(Mes) and [Cu2Al](Cp*)3 clusters 1 and 2, respectively, were shown to be intermediates in the formation of an inseparable composite of the closely related clusters [Cu7Al6](Cp*)6 (3), [HCu7Al6](Cp*)6 (3H) and [Cu8Al6](Cp*)6 (4), which just differ by one Cu core atom. The radical nature of the open-shell superatomic [Cu7Al6](Cp*)6 cluster 3 is reflected in its reactivity towards addition of one Cu core atom leading to the closed shell superatom [Cu8Al6](Cp*)6 (4), and as well by its ability to undergo σ(C–H) and σ(Si–H) activation reactions of C6H5CH3 (toluene) and (TMS)3SiH (TMS = tris(trimethylsilyl)).

Graphical abstract: Exploring Cu/Al cluster growth and reactivity: from embryonic building blocks to intermetalloid, open-shell superatoms

Supplementary files

Article information

Article type
Edge Article
Submitted
14 Jan 2021
Accepted
30 Mar 2021
First published
01 Apr 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 6588-6599

Exploring Cu/Al cluster growth and reactivity: from embryonic building blocks to intermetalloid, open-shell superatoms

M. Schütz, C. Gemel, M. Muhr, C. Jandl, S. Kahlal, J. Saillard and R. A. Fischer, Chem. Sci., 2021, 12, 6588 DOI: 10.1039/D1SC00268F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements