Issue 25, 2021

Synthesis, solution dynamics and chemical vapour deposition of heteroleptic zinc complexes via ethyl and amide zinc thioureides

Abstract

Ethyl and amide zinc thioureides [L1ZnEt]2 (1), [L1*ZnEt]2 (2) and [L1Zn(N(SiMe3)2)]2 (3) have been synthesised from the equimolar reaction of thiourea ligands (HL1 = iPrN(H)CSNMe2 and HL1* = PhN(H)CSNMe2) with diethyl zinc and zinc bis[bis(trimethylsilyl)amide] respectively. New routes towards heteroleptic complexes have been investigated through reactions of 1, 2 and 3 with β-ketoiminates (HL2 = [(Me)CN(H){iPr}–CHC(Me)[double bond, length as m-dash]O]), bulky aryl substituted β-diiminates (HL3 = [(Me)CN(H){Dipp}–CHC(Me)[double bond, length as m-dash]N{Dipp}] (Dipp = diisopropylphenyl) and HL3* = [(Me)CN(H){Dep}–CHC(Me)[double bond, length as m-dash]N{Dep}] (Dep = diethylphenyl)) and donor-functionalised alcohols (HL4 = Et2N(CH2)3OH and HL4* = Me2N(CH2)3OH) and have led to the formation of the heteroleptic complexes [L1*ZnL3*] (5), [L1ZnL4]2 (6), [L1ZnL4*]2 (7), [L1*ZnL4] (8) and [L1*ZnL4*] (9). All complexes have been characterised by 1H and 13C NMR, elemental analysis, and the X-ray structures of HL1*, 1, 2, 6 and 7 have been determined via single crystal X-ray diffraction. Variable temperature 1H, COSY and NOESY NMR experiments investigating the dynamic behaviour of 5, 6 and 7 have shown these molecules to be fluxional. On the basis of solution state fluxionality and thermogravimetric analysis (TGA), alkoxyzinc thioureides 6 and 7 were investigated as single-source precursors for the deposition of the ternary material zinc oxysulfide, Zn(O,S), a buffer layer used in thin film photovoltaic devices. The aerosol-assisted chemical vapour deposition (AACVD) reaction of 7 at 400 °C led to the deposition of the heterodichalcogenide material Zn(O,S), which was confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX), with optical properties investigated using UV/vis spectroscopy, and surface morphology and film thickness examined using scanning electron microscopy (SEM).

Graphical abstract: Synthesis, solution dynamics and chemical vapour deposition of heteroleptic zinc complexes via ethyl and amide zinc thioureides

Supplementary files

Article information

Article type
Edge Article
Submitted
01 Apr 2021
Accepted
22 May 2021
First published
24 May 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2021,12, 8822-8831

Synthesis, solution dynamics and chemical vapour deposition of heteroleptic zinc complexes via ethyl and amide zinc thioureides

M. A. Bhide, K. L. Mears, C. J. Carmalt and C. E. Knapp, Chem. Sci., 2021, 12, 8822 DOI: 10.1039/D1SC01846A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements