Issue 31, 2021

Fe-catalyzed Fukuyama-type indole synthesis triggered by hydrogen atom transfer

Abstract

Fe, Co, and Mn hydride-initiated radical olefin additions have enjoyed great success in modern synthesis, yet the extension of other hydrogen radicalophiles instead of olefins remains largely elusive. Herein, we report an efficient Fe-catalyzed intramolecular isonitrile–olefin coupling reaction delivering 3-substituted indoles, in which isonitrile was firstly applied as the hydrogen atom acceptor in the radical generation step by MHAT. The protocol features low catalyst loading, mild reaction conditions, and excellent functional group tolerance.

Graphical abstract: Fe-catalyzed Fukuyama-type indole synthesis triggered by hydrogen atom transfer

Supplementary files

Article information

Article type
Edge Article
Submitted
05 Jun 2021
Accepted
05 Jul 2021
First published
06 Jul 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 10501-10505

Fe-catalyzed Fukuyama-type indole synthesis triggered by hydrogen atom transfer

T. Zhang, M. Yu and H. Huang, Chem. Sci., 2021, 12, 10501 DOI: 10.1039/D1SC03058B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements