Issue 39, 2021

A ratiometric photoelectrochemical microsensor based on a small-molecule organic semiconductor for reliable in vivo analysis

Abstract

Photoelectrochemical (PEC) sensing has been developing quickly in recent years, while its in vivo application is still in the infancy. The complexity of biological environments poses a high challenge to the specificity and reliability of PEC sensing. We herein proposed the concept of small-molecule organic semiconductor (SMOS)-based ratiometric PEC sensing making use of the structural flexibility as well as readily tunable energy band of SMOS. Xanthene skeleton-based CyOH was prepared as a photoactive molecule, and its absorption band and corresponding PEC output can be modulated by an intramolecular charge transfer process. As such, the target mediated shift of absorption offered the opportunity to construct a ratiometric PEC sensor. A proof-of-concept probe CyOThiols was synthesized and assembled on a Ti wire electrode (TiWE) to prepare a highly selective microsensor for thiols. Under two monochromatic laser excitation (808 nm and 750 nm), CyOThiols/TiWE offered a ratiometric signal (j808/j750), which exhibited pronounced capacity to offset the disturbance of environmental factors, guaranteeing its reliability for application in vivo. The ratiometric PEC sensor achieved the observation of bio-thiol release induced by cytotoxic edema and fluctuations of thiols in drug-induced epilepsy in living rat brains.

Graphical abstract: A ratiometric photoelectrochemical microsensor based on a small-molecule organic semiconductor for reliable in vivo analysis

Supplementary files

Article information

Article type
Edge Article
Submitted
07 Jun 2021
Accepted
01 Sep 2021
First published
01 Sep 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 12977-12984

A ratiometric photoelectrochemical microsensor based on a small-molecule organic semiconductor for reliable in vivo analysis

Y. Xiang, Y. Kong, W. Feng, X. Ye and Z. Liu, Chem. Sci., 2021, 12, 12977 DOI: 10.1039/D1SC03069H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements