Issue 48, 2021

An unexpected non-conjugated AIEgen with a discrete dimer for pure intermolecular through-space charge transfer emission

Abstract

Manipulation of the charge transfer in donor–acceptor-type molecules is essential for the design of controllable aggregate luminescent materials. Apart from the traditional through-bond charge transfer (TBCT) systems which suffer from complicated structural design, poor tunability and low quantum efficiency, through-space charge transfer (TSCT) has been proved as an alternative yet facile strategy in tuning photophysical processes. In this work, by simply changing nucleophilic reaction bases, a traditional conjugated acrylonitrile AP1 and an unexpected non-conjugated AP2 with a carboxamide-functionalized oxirane linker could be obtained. The long-range π–π stacking in conjugated AP1 results in mixed intramolecular TBCT plus intermolecular TSCT emission. However, facilitated by the steric hindrance effect of the big oxirane connector and the unique discrete dimer packing, non-conjugated AP2 exhibits pure and efficient intermolecular TSCT emission in both aggregate and crystalline states. The flexibility of the non-conjugated character further leads to better reversible stimuli-responsiveness to mechanical force for AP2 than for the rigid AP1.

Graphical abstract: An unexpected non-conjugated AIEgen with a discrete dimer for pure intermolecular through-space charge transfer emission

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Oct 2021
Accepted
21 Nov 2021
First published
22 Nov 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 15928-15934

An unexpected non-conjugated AIEgen with a discrete dimer for pure intermolecular through-space charge transfer emission

X. Jiang, W. Tao, C. Chen, G. Xu, H. Zhang and P. Wei, Chem. Sci., 2021, 12, 15928 DOI: 10.1039/D1SC05426K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements