Engineering block co-polymer anion exchange membrane domains for highly efficient electrode-decoupled redox flow batteries†
Abstract
Anion exchange membranes (AEMs) with high permselectivity, chemical stability and mechanical robustness are a key enabling technology for a variety of electrochemical energy conversion and storage systems such as fuel cells, redox flow batteries and water electrolyzers. Herein we examine well understood chemically stable triblock co-polymer AEMs derived by the chloromethylation (CM-) and subsequent trimethylamine (TMA) functionalization of polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) block co-polymers. We show using small angle X-ray scattering (SAXS) that the introduction of a hydrophobic reinforcement matrix disrupts phase segregation and decreases ionic domain sizes in these AEM separators. The reinforcement matrix simultaneously causes the ultimate tensile strength (UTS) of the reinforced separator to increase by almost 600% compared to the unreinforced form, while maintaining comparable elasticity (ca. 500% elongation at break). Such reinforced r-SEBS30-TMA separators enable electrode-decoupled redox flow batteries (ED-RFBs) with significantly improved lifetimes by decreasing per cycle capacity fade from 0.5% to <0.05%. This 10× improvement in operando permselectivity opens the door to ED-RFBs employing inexpensive elemental actives achieving decades-long usable lifespans.