Issue 37, 2021

Synthesis and characterization of electroconductive hydrogels based on oxidized alginate and polypyrrole-grafted gelatin as tissue scaffolds

Abstract

Electroconductive biocompatible hydrogels with tunable properties have extensively been taken into account in tissue engineering applications due to their potential to provide suitable microenvironmental responses for the cells. In the present study, novel electroconductive hydrogels are designed and synthesized by reacting oxidized alginate with polypyrrole-grafted gelatin copolymer (PPy-g-gelatin) via formation of a Schiff-base linkage. The influence of the composition and the concentration of the components on the compressive modulus and functional performance of the hydrogels is investigated. The conductivity of the hydrogels measured by a two-probe method increased by increasing the level of polypyrrole-grafted gelatin, and a conductivity of 0.7753 S m−1 was exhibited by the hydrogel composed of 8% w/v polypyrrole-grafted gelatin (oxidized alginate:gelatin:polypyrrole-grafted gelatin; 30 : 35 : 35% v/v). The hydrogel compressive modulus was shown to be enhanced by increasing the total concentration of hydrogel. The characteristic features of the prepared hydrogels, including swelling ratio, volume fraction, cross-link density, and mesh size, are also studied and analyzed. Besides, the conductive hydrogels have a smaller mesh size and higher cross-link density than the non-conductive hydrogels. However, the hydrogels with high cross-link density, small mesh size, and large pore size presented higher electroconductivity as a result of easier movement of the ions throughout the hydrogel. These conductive hydrogels exhibited electrical conductivity and biodegradability with cell viability, implying potential as scaffolds for tissue engineering.

Graphical abstract: Synthesis and characterization of electroconductive hydrogels based on oxidized alginate and polypyrrole-grafted gelatin as tissue scaffolds

Article information

Article type
Paper
Submitted
22 Jan 2021
Accepted
11 Aug 2021
First published
12 Aug 2021

Soft Matter, 2021,17, 8465-8473

Synthesis and characterization of electroconductive hydrogels based on oxidized alginate and polypyrrole-grafted gelatin as tissue scaffolds

M. Shabani Samghabadi, A. Karkhaneh and A. A. Katbab, Soft Matter, 2021, 17, 8465 DOI: 10.1039/D1SM00118C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements