Issue 19, 2021

Self-organization of a 4-miktoarm star block copolymer induced by cylindrical confinement

Abstract

Self-consistent field calculations have been carried out to reveal the self-assembly behavior of a melt of the ABCD star tetrablock copolymer confined within a cylindrical nanopore. The miktoarm star block copolymer exhibits a rich self-assembly behavior with a myriad of interesting three-dimensional ordered phases with the potential to produce advanced nanomaterials. The broad array of ordered mesophases includes helical microstructures, stack of rings/doughnuts, honeycomb structure, and perforated lamella with beads, depending on the individual block fractions and the size of the cylindrical nanopore. Such chiral motifs generated from achiral polymeric molecules are fascinating due to their superior performance in sophisticated opto-electronic devices. The study also demonstrates an interesting morphology, viz. a honeycomb structure, obtained from the self-organization of ABCD star block copolymer molecules with equal block fractions. The system exhibits order–order phase transition covering a range of ordered morphologies by changing either the block fraction or the nanopore radius. A representative phase diagram in terms of block fractions is constructed. These novel ordered microstructures, arising mainly out of structural frustration and confinement-induced entropy loss, can serve as structural scaffolds to host the spatial distribution of nanoparticles resulting into novel nanocomposites with significantly enhanced as well as controllable properties.

Graphical abstract: Self-organization of a 4-miktoarm star block copolymer induced by cylindrical confinement

Article information

Article type
Paper
Submitted
27 Jan 2021
Accepted
01 Mar 2021
First published
02 Mar 2021

Soft Matter, 2021,17, 4929-4941

Self-organization of a 4-miktoarm star block copolymer induced by cylindrical confinement

S. Gupta and P. Chokshi, Soft Matter, 2021, 17, 4929 DOI: 10.1039/D1SM00149C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements