Issue 20, 2021

Benzoate ester as a new species for supramolecular chiral assembly

Abstract

In this work, a benzoate ester molecule, dodecamethylnonacosane-2,28-diyl dibenzoate (DMNDB), has been discovered as a new species that aggregates into chiral nano-assemblies. In the tetrahydrofuran (THF)/water system, the benzoate ester, DMNDB, could self-assemble into left-handed twisted nanowires, and the most suitable THF/water volume ratio to obtain uniform twisted nanowires was 3 : 7. The driving forces of assembly and the molecular packing type in assemblies for the twisted nanowires were explored, and a possible assembly mechanism was proposed to understand the generation of chiral assemblies. Interestingly, the left-handed nanowires could cross-link and immobilize the solvent in the isopropanol (iPrOH)/water (2 : 8) system to form chiral gels. When the iPrOH/water ratio was increased to 6 : 4, the left-handed nanowires as structural units were found to evolve to right-handed nanofibers. Accordingly, the intermolecular interactions and the molecular packing type also changed with the solvent ratio. What is more, the xerogel could be obtained by drying the gel and left-handed twisted nanowires could form in the THF/water system again, showing the recyclability of chiral nanoassemblies. Also, these DMNDB chiral nanostructures exhibited potential for application in enantioselective separation by co-assembling with tetra-aniline.

Graphical abstract: Benzoate ester as a new species for supramolecular chiral assembly

Supplementary files

Article information

Article type
Paper
Submitted
04 Feb 2021
Accepted
05 Apr 2021
First published
06 Apr 2021

Soft Matter, 2021,17, 5137-5147

Benzoate ester as a new species for supramolecular chiral assembly

C. Zhou, Q. Xu, Y. Ren, X. Sun, Z. Xu, J. Han and R. Guo, Soft Matter, 2021, 17, 5137 DOI: 10.1039/D1SM00188D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements