Issue 21, 2021

A simulation study of the self-assembly of ABC star terpolymers confined between two parallel surfaces

Abstract

The phase behavior of ABC star terpolymers confined between two identical parallel surfaces is systematically studied using a simulated annealing method. Several phase diagrams are constructed for systems with different bulk phases or with different interfacial interaction strength ratios in the space of surface distance (D) and surface preference for different arms, or in the space of D and the arm-length ratio x. Phases, including tiling patterns [6.6.6], [8.8.4], [8.6.6; 8.6.4], [8.6.6; 8.6.4; 10.6.6; 10.6.4] and hierarchical lamellar structures of lamella + cylinders and lamella + rods, are identified both in the bulk and in the films. Our results suggest that the self-assembled structure of a phase is largely controlled by x, while an increase of the interfacial interaction strength ratio shifts the x-window for each phase to the smaller x side. The orientation of a confined phase depends on the “effective surface preference” which is a combined effect of the interfacial interaction strength ratio, the surface preference, and the entropic preference. In the case of neutral or weak “effective surface preference”, phases with a perpendicular orientation are usually observed, while in the case of strong “effective surface preference” phases with a perpendicular orientation or also with outermost wetting-layers can be frequently observed under some circumstances.

Graphical abstract: A simulation study of the self-assembly of ABC star terpolymers confined between two parallel surfaces

Supplementary files

Article information

Article type
Paper
Submitted
21 Feb 2021
Accepted
14 Apr 2021
First published
15 Apr 2021

Soft Matter, 2021,17, 5336-5348

A simulation study of the self-assembly of ABC star terpolymers confined between two parallel surfaces

Z. Liu, Z. Wang, Y. Yin, R. Jiang and B. Li, Soft Matter, 2021, 17, 5336 DOI: 10.1039/D1SM00271F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements