Issue 26, 2021

Data-driven coarse-grained modeling of non-equilibrium systems

Abstract

Modeling a high-dimensional Hamiltonian system in reduced dimensions with respect to coarse-grained (CG) variables can greatly reduce computational cost and enable efficient bottom-up prediction of main features of the system for many applications. However, it usually experiences significantly altered dynamics due to loss of degrees of freedom upon coarse-graining. To establish CG models that can faithfully preserve dynamics, previous efforts mainly focused on equilibrium systems. In contrast, various soft matter systems are known to be out of equilibrium. Therefore, the present work concerns non-equilibrium systems and enables accurate and efficient CG modeling that preserves non-equilibrium dynamics and is generally applicable to any non-equilibrium process and any observable of interest. To this end, the dynamic equation of a CG variable is built in the form of the non-stationary generalized Langevin equation (nsGLE), where the two-time memory kernel is determined from the data of the auto-correlation function of the observable of interest. By embedding the nsGLE in an extended dynamics framework, the nsGLE can be solved efficiently to predict the non-equilibrium dynamics of the CG variable. To prove and exploit the equivalence of the nsGLE and extended dynamics, the memory kernel is parameterized in a two-time exponential expansion. A data-driven hybrid optimization process is proposed for the parameterization, which integrates the differential-evolution method with the Levenberg–Marquardt algorithm to efficiently tackle a non-convex and high-dimensional optimization problem.

Graphical abstract: Data-driven coarse-grained modeling of non-equilibrium systems

Supplementary files

Article information

Article type
Paper
Submitted
17 Mar 2021
Accepted
25 May 2021
First published
27 May 2021

Soft Matter, 2021,17, 6404-6412

Author version available

Data-driven coarse-grained modeling of non-equilibrium systems

S. Wang, Z. Ma and W. Pan, Soft Matter, 2021, 17, 6404 DOI: 10.1039/D1SM00413A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements