Issue 23, 2021

Defects in crystals of soft colloidal particles

Abstract

In this paper we use computer simulations to examine point defects in systems of “soft” colloidal particles including Hertzian spheres, and star polymers. We use Monte Carlo simulations to determine the deformation of the different crystals associated with vacancies and interstitials and use thermodynamic integration to predict the equilibrium concentrations of such defects. We find that the nature of the lattice distortion is mainly determined by the crystal structure and not by the specifics of the interaction potential. We can distinguish one-, two-, and three-dimensional lattice distortions and find that the range of the distortion generally depends on the dimensionality. We find that in both model systems the deformation of the body-centered cubic (BCC) crystal caused by an interstitial is one-dimensional and we show that its structure is well described as a crowdion. Similarly, we show that the one-dimensional deformation of the hexagonal (H) crystal of Hertzian spheres caused by a vacancy can be characterized as a voidion. Interestingly, with the exception of the FCC crystal in the Hertzian sphere model, in all cases we find that the interstitial concentration is higher than the vacancy concentration. Most noteworthy, the concentration of interstitials in the BCC crystals can reach up to 1%.

Graphical abstract: Defects in crystals of soft colloidal particles

Article information

Article type
Paper
Submitted
09 Apr 2021
Accepted
07 May 2021
First published
20 May 2021
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2021,17, 5718-5729

Defects in crystals of soft colloidal particles

M. de Jager, J. de Jong and L. Filion, Soft Matter, 2021, 17, 5718 DOI: 10.1039/D1SM00531F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements