Issue 31, 2021

Interplay between hysteresis and nonlocality during onset and arrest of flow in granular materials

Abstract

The jamming transition in granular materials is well-known for exhibiting hysteresis, wherein the level of shear stress required to trigger flow is larger than that below which flow stops. Although such behavior is typically modeled as a simple non-monotonic flow rule, the rheology of granular materials is also nonlocal due to cooperativity at the grain scale, leading for instance to increased strengthening of the flow threshold as system size is reduced. We investigate how these two effects – hysteresis and nonlocality – couple with each other by incorporating non-monotonicity of the flow rule into the nonlocal granular fluidity (NGF) model, a nonlocal constitutive model for granular flows. By artificially tuning the strength of nonlocal diffusion, we demonstrate that both ingredients are key to explaining certain features of the hysteretic transition between flow and arrest. Finally, we assess the ability of the NGF model to quantitatively predict material behavior both around the transition and in the flowing regime, through stress-driven discrete element method (DEM) simulations of flow onset and arrest in various geometries. Along the way, we develop a new methodology to compare deterministic model predictions with the stochastic behavior exhibited by the DEM simulations around the jamming transition.

Graphical abstract: Interplay between hysteresis and nonlocality during onset and arrest of flow in granular materials

Supplementary files

Article information

Article type
Paper
Submitted
05 May 2021
Accepted
02 Jul 2021
First published
08 Jul 2021
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2021,17, 7359-7375

Interplay between hysteresis and nonlocality during onset and arrest of flow in granular materials

S. Mowlavi and K. Kamrin, Soft Matter, 2021, 17, 7359 DOI: 10.1039/D1SM00659B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements