Issue 10, 2021

A pressure induced reversal to the 9R perovskite in Ba3MoNbO8.5

Abstract

Ba3MoNbO8.5 is an oxide ion conductor with an unconventional hybrid crystal structure that is intermediate between the 9R-perovskite (A3B3O9) and the palmierite (A3B2O8). The crystal structure is highly disordered with vacancies distributed across two cation (M(1) and M(2)) and oxygen sites (O(2) and O(3)), with Mo and Nb in variable coordinate environments. M(1)–O(1)–O(2) and M(2)–O(1) sites are associated with the formation of (Mo,Nb)O6 octahedra, whilst tetrahedral units are composed of M(1)–O(1)–O(3) atoms. Upon increasing the temperature, the structure undergoes a change in occupancy in favour of the O(3) site, which results in a change in metal co-ordination as the tetrahedral to octahedral ratio increases. We demonstrate that the structure can also be tuned using externally applied pressure. Variable pressure studies ≤4.8 GPa indicate that densification of the unit cell induces the reverse effect, as the occupancy of the O(2) site increases and the palmierite contribution is suppressed. Our results strongly suggest that by 5.2 GPa the O(3) position will be completely empty as the 9R unit cell stabilises with a network of octahedral MO6 units. Pressure induces a flattening of M(1)O4 tetrahedra in the palmierite layers, as M(1)O6 octahedra become more regular in geometry. Bond valence site energy calculations show that pressure increases the height of all energy barriers to migration along the three-dimensional diffusion pathways, increasing the energy of the dominant pathway from 0.35 to 0.95 eV. The relaxation energy, E2, disappears above 2.8 GPa, when the average polyhedral distortion (σ(R)) falls below 0.07 Å, indicating the existence of a critical minimum. The bulk modulus of Ba3MoNbO8.5 is exceptionally low (50(2) GPa) for a layered oxide material and is closer to that of the halide perovskites. These results demonstrate a high degree of flexibility, in terms of the softness of the lattice and variable metal coordination, emphasising the potential for these materials in multi sensory and thin film applications.

Graphical abstract: A pressure induced reversal to the 9R perovskite in Ba3MoNbO8.5

Supplementary files

Article information

Article type
Paper
Submitted
18 Nov 2020
Accepted
07 Feb 2021
First published
08 Feb 2021
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2021,9, 6567-6574

A pressure induced reversal to the 9R perovskite in Ba3MoNbO8.5

B. Sherwood, C. J. Ridley, C. L. Bull, S. Fop, J. M. S. Skakle, A. C. McLaughlin and E. J. Wildman, J. Mater. Chem. A, 2021, 9, 6567 DOI: 10.1039/D0TA11270D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements