Issue 13, 2021

Highly efficient CO2 electrolysis to CO on Ruddlesden–Popper perovskite oxide with in situ exsolved Fe nanoparticles

Abstract

We prepared a highly active and stable cathode catalyst for a solid oxide electrolysis cell (SOEC), decorated with in situ exsolved Fe nanoparticles (NPs) socketed on La1.2Sr0.8Mn0.4Fe0.6O4−α (R.P.LSMF), toward the CO2 electrolysis reaction to produce CO selectively. This catalyst was derived from the perovskite structure of La0.6Sr0.4Mn0.2Fe0.8O3−δ (LSMF) by simple annealing in a H2 atmosphere and showed high current densities of 2.04, 1.43, and 0.884 A cm−2 at 850, 800, and 750 °C, respectively, at a voltage of 1.5 V with corresponding total polarization resistance values of 0.205, 0.326, and 0.587 Ω cm2, respectively, at an open circuit voltage. The highly improved performance should be ascribed to the in situ exsolved Fe NPs anchored on Ruddlesden–Popper oxide and to the increased contents of oxygen vacancies in R.P.LSMF. More importantly, this active catalyst also exhibited a stable voltage profile for 100 h operation at an constant current density of 1.8 A cm−2, suggesting that the catalyst Fe–R.P.LSMF proposed in this study is a highly promising candidate for use in an efficient SOEC cathode for CO2 electrolysis processes.

Graphical abstract: Highly efficient CO2 electrolysis to CO on Ruddlesden–Popper perovskite oxide with in situ exsolved Fe nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
20 Nov 2020
Accepted
01 Mar 2021
First published
03 Mar 2021

J. Mater. Chem. A, 2021,9, 8740-8748

Highly efficient CO2 electrolysis to CO on Ruddlesden–Popper perovskite oxide with in situ exsolved Fe nanoparticles

J. Choi, S. Park, H. Han, M. Kim, M. Park, J. Han and W. B. Kim, J. Mater. Chem. A, 2021, 9, 8740 DOI: 10.1039/D0TA11328J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements