Ceria-promoted Co@NC catalyst for biofuel upgrade: synergy between ceria and cobalt species†
Abstract
Ceria-promoted Co@NC (NC, N doped carbon) catalysts are prepared by pyrolysis of biomass materials. Characterization results indicate that ceria and Co species facilitate the distribution of each other due to the formation of a Ce–O–Co solid solution. The specific surface area of the catalyst increased from 378.77 to 537.7 m2 g−1via the introduction of ceria. The electron transfer from Co to Ce further enhanced their interaction, and Co species facilitate the formation of more defective oxygen vacancies on ceria, which are beneficial to the activities of catalytic hydrogenation and catalytic transfer hydrogenation (CTH), respectively. Thus, Co/Ce@NC (0.99% Co loading) pyrolyzed at 850 °C exhibits excellent performance in the hydrodeoxygenation (HDO) of vanillin with high metal utilization. Catalytic hydrogenation and CTH coexisted in the presence of H2 and ethanol, and >99% yield of creosol can be obtained in each of them. The reaction processes are monitored. No intermediate is found in aqueous media, while ethoxymethyl-4-methoxy-2-phenol is detected in ethanol. Moreover, Co/Ce@NC presents outstanding stability and general applicability. This work provides new insights into the construction of M@NC (M, metal) catalysts and the HDO process of biofuel upgrade.