Issue 13, 2021

Synthesis, band structure and photocatalytic properties of Sillén–Aurivillius oxychlorides BaBi5Ti3O14Cl, Ba2Bi5Ti4O17Cl and Ba3Bi5Ti5O20Cl with triple-, quadruple- and quintuple-perovskite layers

Abstract

Sillén–Aurivillius layered oxyhalides with single-, double- and triple-perovskite slabs (n = 1–3) are promising visible-light-driven photocatalysts for water splitting with different behaviors observed depending on n. However, there was no report on the photocatalytic activity of n ≥ 4 phases. Here, we report three new oxychlorides BaBi5Ti3O14Cl, Ba2Bi5Ti4O17Cl and Ba3Bi5Ti5O20Cl, respectively, with triple-, quadruple- and quintuple-perovskite layers. The synthesis of these phases involves a “bricklaying” synthesis, where a plain perovskite, BaTiO3, a Sillén phase, BaBiO2Cl, and Aurivillius phases Bi4Ti3O12, BaBi4Ti4O15, and Ba2Bi4Ti5O18 were used as building blocks. The present Sillén–Aurivillius oxychlorides have appropriate valence and conduction band levels for visible-light-induced water splitting. DFT calculation for BaBi5Ti3O14Cl (n = 3) and Ba3Bi5Ti5O20Cl (n = 5) indicates that their valence and conduction bands are separated spatially on the perovskite and fluorite layers, respectively. The photocatalytic activity of the three Sillén–Aurivillius oxychlorides is enhanced with increasing the number of the perovskite layers.

Graphical abstract: Synthesis, band structure and photocatalytic properties of Sillén–Aurivillius oxychlorides BaBi5Ti3O14Cl, Ba2Bi5Ti4O17Cl and Ba3Bi5Ti5O20Cl with triple-, quadruple- and quintuple-perovskite layers

Supplementary files

Article information

Article type
Paper
Submitted
29 Dec 2020
Accepted
20 Feb 2021
First published
24 Feb 2021

J. Mater. Chem. A, 2021,9, 8332-8340

Author version available

Synthesis, band structure and photocatalytic properties of Sillén–Aurivillius oxychlorides BaBi5Ti3O14Cl, Ba2Bi5Ti4O17Cl and Ba3Bi5Ti5O20Cl with triple-, quadruple- and quintuple-perovskite layers

D. Ozaki, H. Suzuki, K. Ogawa, R. Sakamoto, Y. Inaguma, K. Nakashima, O. Tomita, H. Kageyama and R. Abe, J. Mater. Chem. A, 2021, 9, 8332 DOI: 10.1039/D0TA12550D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements