Issue 8, 2021

Alkaline salt-promoted construction of hydrophilic and nitrogen deficient graphitic carbon nitride with highly improved photocatalytic efficiency

Abstract

Graphitic carbon nitride (g-C3N4) possesses fascinating merits, but its practical applications are limited by the inferior properties of limited visible-light sorption, rapid recombination of photo-excited charge carriers and low electrical conductivity. Introduction of N-defects is an efficient approach to tune its optical properties, but strategies capable of creating abundant vacancies and simultaneously maintaining the highly crystalline architecture are still limited and highly desired. In this work, a facile construction methodology was demonstrated to afford g-C3N4 with abundant N vacancies, high crystallinity, a hydrophilic surface structure, a small particle size, and an increased surface area under neat and mild conditions. The essence of our approach lies in the treatment of the bulk g-C3N4 precursor with an alkaline salt (LiN(SiMe3)2) with a low melting point, moderate nucleophilicity, and easy removal procedures. The unique structural properties of the afforded ND-g-C3N4 allow for a significantly redshifted absorption edge and enhanced charge carrier separation, leading to superior photocatalytic hydrogen evolution performance three times that obtained by pristine g-C3N4. The modification strategy developed herein sheds light on the fabrication of g-C3N4-based materials with improved photocatalytic efficiency via efficient introduction of N defects, variation of the surface structure, and retention of the high crystallinity.

Graphical abstract: Alkaline salt-promoted construction of hydrophilic and nitrogen deficient graphitic carbon nitride with highly improved photocatalytic efficiency

Supplementary files

Article information

Article type
Communication
Submitted
19 Jan 2021
Accepted
07 Feb 2021
First published
08 Feb 2021

J. Mater. Chem. A, 2021,9, 4700-4706

Author version available

Alkaline salt-promoted construction of hydrophilic and nitrogen deficient graphitic carbon nitride with highly improved photocatalytic efficiency

H. Chen, W. Wang, Z. Yang, X. Suo, Z. Lu, W. Xiao and S. Dai, J. Mater. Chem. A, 2021, 9, 4700 DOI: 10.1039/D1TA00524C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements