Issue 32, 2021

Rapid synthesis of gold–palladium core–shell aerogels for selective and robust electrochemical CO2 reduction

Abstract

Noble metal aerogels (NMAs), one class of the youngest members in the aerogel family, have drawn increasing attention in the last decade. Featuring the high catalytic activity of noble metals and a 3D self-supported porous network of the aerogels, they have displayed profound potential for electrocatalysis. However, considerable challenges reside in the rapid fabrication of NMAs with a well-tailored architecture, constraining the manipulation of their electrochemical properties for optimized performance. Here, a disturbance-assisted dynamic shelling strategy is developed, generating self-supported Au–Pd core–shell gels within 10 min. Based on suitable activation and desorption energies of the involved species as suggested by theoretical calculations, the Au–Pd core–shell aerogel manifests outstanding CO selectivity and stability at low overpotential (faradaic efficiency > 98% at −0.5 V vs. RHE over 12 hours) for the electrochemical CO2 reduction reaction (CO2RR). The present strategy offers a new perspective to facilely design architecture-specified high-performance electrocatalysts for the CO2RR.

Graphical abstract: Rapid synthesis of gold–palladium core–shell aerogels for selective and robust electrochemical CO2 reduction

Supplementary files

Article information

Article type
Communication
Submitted
13 Apr 2021
Accepted
15 Jul 2021
First published
15 Jul 2021

J. Mater. Chem. A, 2021,9, 17189-17197

Rapid synthesis of gold–palladium core–shell aerogels for selective and robust electrochemical CO2 reduction

R. Du, W. Jin, H. Wu, R. Hübner, L. Zhou, G. Xue, Y. Hu and A. Eychmüller, J. Mater. Chem. A, 2021, 9, 17189 DOI: 10.1039/D1TA03103A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements