Issue 41, 2021

The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries

Abstract

The transition towards electric vehicles and more sustainable transportation is dependent on lithium-ion battery (LIB) performance. Ni-rich layered transition metal oxides, such as NMC811 (LiNi0.8Mn0.1Co0.1O2), are promising cathode candidates for LIBs due to their higher specific capacity and lower cost compared with lower Ni content materials. However, complex degradation mechanisms inhibit their use. In this work, tailored aging protocols are employed to decouple the effect of electrochemical stimuli on the degradation mechanisms in graphite/NMC811 full cells. Using these protocols, impedance measurements, and differential voltage analysis, the primary drivers for capacity fade and impedance rise are shown to be large state of charge changes combined with high upper cut-off voltage. Focused ion beam-scanning electron microscopy highlights that extensive microscale NMC particle cracking, caused by electrode manufacturing and calendering, is present prior to aging and not immediately detrimental to the gravimetric capacity and impedance. Scanning transmission electron microscopy electron energy loss spectroscopy reveals a correlation between impedance rise and the level of transition metal reduction at the surfaces of aged NMC811. The present study provides insight into the leading causes for LIB performance fading, and highlights the defining role played by the evolving properties of the cathode particle surface layer.

Graphical abstract: The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
27 Jul 2021
Accepted
07 Oct 2021
First published
11 Oct 2021
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2021,9, 23582-23596

The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries

W. M. Dose, J. K. Morzy, A. Mahadevegowda, C. Ducati, C. P. Grey and M. F. L. De Volder, J. Mater. Chem. A, 2021, 9, 23582 DOI: 10.1039/D1TA06324C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements