Microfluidic spinning-induced heterotypic bead-on-string fibers for dual-cargo release and wound healing†
Abstract
The preparation of dual-release pharmaceutical microfibers provides an ideal material for new biomedical applications. We describe a microfluidic spinning method for engineering heterotypic bead-on-string fibers with the ability to carry dual cargos and to deliver on demand. The core of our technology is to combine microfluidic spinning with biomaterial preparation, in which hydrophobic and hydrophilic cargos can be integrated into a bead-on-string microfiber structure. We demonstrate the loading of bovine serum albumin (BSA) in the sodium alginate phase and ibuprofen in the polylactic acid (PLA) phase, respectively. The heterotypic bead-on-string fibers are biocompatible and show hemostatic ability in vivo. These heterotypic bead-on-string fibers are then woven as a skin scaffold and shown to promote wound healing by loading antibacterial and anti-inflammatory cargos.