Issue 3, 2021

A methylation-inspired mesoporous coordination polymer for identification and removal of organic pollutants in aqueous solutions

Abstract

Qualitative analysis of contamination events and rapid removal of hazardous substances from water are in urgent need for a sustainable environment and human health. Porous coordination polymers (PCPs) bridged by organic ligands through metal nodes in an extendable and periodic manner have emerged as competitive candidates for the detection and removal of hazardous substances. However, the majority of them suffer from high production costs, poor structural stability and environmental problems, which has become a bottleneck for commercial translation. Here, we report a class of phenylalanine-based metal–biomolecule complexes and discuss the impact of subtle sequence variations in modular ligands on their assembly behaviors and structural properties. The phenomenon in which the bioligands dominate the structure formation and surface wettability has been revealed. A Cu(II)–aspartame coordination polymer, Cu(mDF), with satisfactory chemical stability was selected for removal of organic pollutants in aqueous solution. The mesoporous structure, surface charge and high specific surface area (233.71 m2 g−1, Dmean = 5.65 nm) promote its rapid equilibrium of anionic adsorption within 10 min. In addition, Cu(mDF) possessing an adsorption-induced color-shifting feature provides an ideal platform for organic pollutant detection. Furthermore, Cu(mDF) with biocompatibility and low cost fabrication exhibits antimicrobial properties against C. albicans, E. coli and S. aureus, and may be a potential purifier in wastewater treatment.

Graphical abstract: A methylation-inspired mesoporous coordination polymer for identification and removal of organic pollutants in aqueous solutions

Supplementary files

Article information

Article type
Paper
Submitted
07 Oct 2020
Accepted
13 Nov 2020
First published
16 Nov 2020

J. Mater. Chem. B, 2021,9, 638-647

A methylation-inspired mesoporous coordination polymer for identification and removal of organic pollutants in aqueous solutions

Z. Chen, Z. Lv, Z. Lin, J. Chen, Y. Zhang, C. Wang, G. Qing, Y. Sun and Z. Chi, J. Mater. Chem. B, 2021, 9, 638 DOI: 10.1039/D0TB02389B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements