A miRNA stabilizing polydopamine nano-platform for intraocular delivery of miR-21-5p in glaucoma therapy†
Abstract
The elevation of intraocular pressure (IOP) is an important risk factor in the development of primary open angle glaucoma (POAG), which is the main cause of irreversible vision loss. miRNAs are promising new anti-glaucoma therapeutic agents. However, the low stability and cellular transfection of miRNA in vivo hinder its further application. This study aims to investigate the use of polydopamine–polyethylenimine nanoparticles (PDA/PEI NPs) as miRNA carriers in the treatment of ocular hypertension and glaucoma. The in vitro study proves that the carrier preserves the activity of nucleic acid for a long period. Besides, it has comparable transfection efficiency with commercially available vehicles, while having lower cytotoxicity. It has been demonstrated in the animal model that PDA/PEI NPs successfully reach the target tissues without an obvious inflammatory response. PDA/PEI NPs/miR-21-5p increases the permeability of porcine angular aqueous plexus cells, thereby reducing IOP by facilitating the conventional outflow pathway at least partially through the pathway involving endothelial nitric oxide synthase. Our results indicate that PDA/PEI NPs/miR-21-5p is a promising anti-glaucoma drug for treating POAG. And the delivery strategy may be extended to other gene therapy in treating intraocular diseases.