Naphthalene-facilitated self-assembly of a Gd-chelate as a novel T2 MRI contrast agent for visualization of stem cell transplants†
Abstract
Naphthalene is coupled with DOTA via a peptide sequence to yield an amphipathic MRI probe Nap-CFGKTG-DOTA-Gd (Nap-Gd) that can self-assemble into nanofibers. Incubation of NSCs, hMSCs and L929 cells in the presence of Nap-Gd in the μM level can introduce a significant amount of Nap-Gd into the cells as nanoclusters or nanofibers. The resultant intracellular Gd content is 10–60 times that achieved by incubation with Dotarem at the same concentration. The labelled cells exhibit a significant hyperintensive effect under T1-weighted MRI and a significant hypointensive effect under T2-weighted MRI. The hypointensive effect is more persistent than the hyperintensive effect, which allows in vivo tracking of labelled hMSCs for over 12 days under T2-weighted MRI. A comprehensive interpretation of the MRI signal intensity and the associated relaxation times reveals the structure–function relationship between the binding status of Nap-Gd in cells (structure) and the magnetic relaxation processes (function) toward a full understanding of the observed hyperintensive and hypointensive effects.