B-Ring-extended flavonol-based photoCORM: activated by cysteine-ratiometric fluorescence sensing and accurate control of linear CO release†
Abstract
The first B-ring-extended (to biphenyl) flavonol-based Cys-ratiometric fluorescent probe B-bph-fla-acr (2-([1,1′-biphenyl]-4-yl)-4-oxo-4H-chromen-3-yl acrylate) is developed. B-bph-fla-acr can ratiometrically sense and non-ratiometrically image endogenous and exogenous cysteine (Cys) in living HeLa cells and zebrafish rapidly (45 s), selectively (vs. homocysteine and glutathione), sensitively (detection limit: 18.5 nM), and with a large Stokes shift (186 nm). Quantitatively released (from the reaction of B-bph-fla-acr with Cys) fluorophore B-bph-fla-OH (2-([1,1′-biphenyl]-4-yl)-3-hydroxy-4H-chromen-4-one) is designed as a photoCORM (photo-triggered CO releasing molecule). Under O2 and visible light irradiation, the amount of CO released by B-bph-fla-OH can be accurately controlled linearly by adjusting the light irradiation intensity, irradiation time, or photoCORM dose. This process is accompanied by fluorescence quenching; therefore, the location of the photoCORM and the CO release process can be monitored in real time. B-bph-fla-acr and all reaction products exhibit good membrane permeability and low toxicity for living HeLa cells. In living HeLa cells and zebrafish, B-bph-fla-acr can image endogenous and exogenous Cys, and the released B-bph-fla-OH can photo-release CO under O2 at room temperature. This study is the first to combine a B-ring-extended flavonol-based fluorescent probe (for the effective ratiometric sensing and non-ratiometric imaging of endogenous and exogenous Cys in vitro and in vivo) with a photoCORM (Cys-activated, visible light-triggered linear CO release under O2). Our study provides important insights into the biological roles of Cys and CO, as well as a reliable method for safely supplying accurately controlled amounts of CO to living systems, thereby facilitating the development of convenient clinical diagnostic molecular tools and therapeutic prodrugs.