Bis(4-dialkylaminophenyl)heteroarylamino donor chromophores exhibiting exceptional hyperpolarizabilities†
Abstract
Organic electro-optic (EO) materials incorporated into silicon-organic hybrid and plasmonic-organic hybrid devices have enabled new records in EO modulation performance. We report a new series of nonlinear optical chromophores engineered by theory-guided design, utilizing bis(4-dialkylaminophenyl)heteroarylamino donor moieties to greatly enhance molecular hyperpolarizabilities. Hyperpolarizabilities predicted using density functional theory were validated by hyper-Rayleigh scattering measurements, showing strong prediction/experiment agreement and >2-fold advancement in static hyperpolarizability over the best prior chromophores. Electric field poled thin films of these chromophores showed significantly enhanced EO coefficients (r33) and poling efficiencies (r33/Ep) at low chromophore concentrations compared with state-of-the-art chromophores such as JRD1. The highest performing blend, containing just 10 wt% of the novel chromophore BTP7, showed a 12-fold enhancement in poling efficiency per unit concentration vs.JRD1. Our results suggest that further improvement in chromophore hyperpolarizability is feasible without unacceptable tradeoffs with optical loss or stability.
- This article is part of the themed collection: Journal of Materials Chemistry C HOT Papers