Issue 9, 2021

Novel thermally activated delayed fluorescence materials by high-throughput virtual screening: going beyond donor–acceptor design

Abstract

A series of candidates of thermally activated delayed fluorescence (TADF) materials, which have important applications in organic light emitting diodes devices, are identified by a high-throughput virtual screening of a database of known molecular materials. The first step of the screening identifies nearly 700 molecules that, in the X-ray geometry, have a sufficiently small gap between excitation energy of the lowest singlet and triplet states and acceptable oscillator strength of the singlet. After geometry optimization, 125 molecules continue to satisfy the energy criteria for potential TADF. Furthermore, the parameters of excited state dynamics including the reorganization energy, adiabatic excitation energy and spin–orbital coupling are calculated for a sample of molecules based on the optimized excited state geometries. The majority of the candidates are not known as TADF materials and could be considered promising lead compounds for the exploration of this materials class. Interestingly, it is found that some novel chromophores deviate from the current design rule for TADF materials, which are invariably based on a donor–acceptor molecular architecture. We also illustrate how to design completely new types of TADF materials using the results of this screening.

Graphical abstract: Novel thermally activated delayed fluorescence materials by high-throughput virtual screening: going beyond donor–acceptor design

Supplementary files

Article information

Article type
Paper
Submitted
01 Jan 2021
Accepted
04 Feb 2021
First published
04 Feb 2021

J. Mater. Chem. C, 2021,9, 3324-3333

Novel thermally activated delayed fluorescence materials by high-throughput virtual screening: going beyond donor–acceptor design

K. Zhao, Ö. H. Omar, T. Nematiaram, D. Padula and A. Troisi, J. Mater. Chem. C, 2021, 9, 3324 DOI: 10.1039/D1TC00002K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements