Bacterial growth monitored by two-dimensional tandem mass spectrometry†
Abstract
The growth of the bacterium E. coli was monitored by targeting the phospholipid constituents through desorption electrospray ionization and characterizing individual sets of isomers by recording the full 2D MS/MS data domain in a single scan of a modified quadrupole ion trap mass spectrometer. The experiments tested the applicability of the new instrumental capabilities which include sample interrogation at the molecular level for multiple components at speeds of <10 seconds/sample. The major lipids observed were phosphatidylethanolamines and phosphatidylglycerols and the growth experiment showed fatty acid chain modification from alkene to cyclopropyl groups over time. Notably, these novel MS scans were also performed using desorption electrospray ionization (DESI) to quickly sample complex mixtures without pre-separation. This demonstration experiment has implications for the value of ambient ionization mass spectrometry for monitoring biological systems on physiologically relevant timescales.