Issue 5, 2022

A selective electrochemical chiral interface based on a carboxymethyl-β-cyclodextrin/Pd@Au nanoparticles/3D reduced graphene oxide nanocomposite for tyrosine enantiomer recognition

Abstract

Palladium@gold nanoparticle modified three-dimensional-reduced graphene oxide (3D-rGO/Pd@Au) was coupled with carboxymethyl-β-cyclodextrin to form a novel nanocomposite (3D-rGO/Pd@Au/CM-β-CD). The 3D-rGO/Pd@Au/CM-β-CD served as a chiral sensing interface for the electrochemical enantiorecognition of tyrosine (Tyr) via a differential pulse voltammetry (DPV) approach. The 3D-rGO/Pd@Au demonstrates good electrical conductivity and efficient catalytic activity as an electrochemical indicator. Simultaneously, the CM-β-CD displays a supramolecular chiral selectivity to reveal a higher binding affinity to the target L-tyrosine (L-Tyr) than to D-tyrosine (D-Tyr). Under the optimized determining conditions, the oxidation peak current ratio of L-Tyr to D-Tyr (IL/ID) was 2.12, meanwhile, the peak currents of the two isomers were linearly proportional to the concentration over the range of 0.8–130 μM with LODs of 52 nM and 96 nM for L- and D-Tyr (S/N = 3), respectively. This approach exhibits distinguished sensitivity, excellent selectivity and good reproducibility, as well as great stability, which can accurately determine the relative content of L- or D-Tyr enantiomers in a racemic solution.

Graphical abstract: A selective electrochemical chiral interface based on a carboxymethyl-β-cyclodextrin/Pd@Au nanoparticles/3D reduced graphene oxide nanocomposite for tyrosine enantiomer recognition

Supplementary files

Article information

Article type
Paper
Submitted
14 Dec 2021
Accepted
25 Jan 2022
First published
25 Jan 2022

Analyst, 2022,147, 880-888

A selective electrochemical chiral interface based on a carboxymethyl-β-cyclodextrin/Pd@Au nanoparticles/3D reduced graphene oxide nanocomposite for tyrosine enantiomer recognition

Q. Niu, P. Jin, Y. Huang, L. Fan, C. Zhang, C. Yang, C. Dong, W. Liang and S. Shuang, Analyst, 2022, 147, 880 DOI: 10.1039/D1AN02262H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements