Issue 6, 2022

Single-particle study: effects of mercury amalgamation on morphological and spectral changes in anisotropic gold nanorods

Abstract

This study investigated the amalgamation of gold nanorods (AuNRs) exposed to Hg(II) solution and its effects on structural and spectral changes in single AuNRs using scanning electron microscopy and total internal reflection scattering microscopy. First, Hg adsorption on AuNR surfaces formed AuNRs@Hg core–shell structures. Afterwards, they transformed to AuNRs@AuHg alloy shell structures in air due to the slow inward diffusion of Hg over time. The aspect ratio (AR) of the AuNRs@AuHg formed by the amalgamation was significantly decreased compared to that of bare AuNRs. Furthermore, the Hg coating on AuNRs induced a dramatic blue shift of the localized surface plasmon resonance (LSPR) peak and linewidth broadening, followed by a red shift and linewidth narrowing of the LSPR peak due to inward diffusion of Hg into the AuNR core. Finally, we investigated the effects of oxygen plasma treatment on the structural changes of AuNRs@AuHg and found that their AR was a decreasing function of the plasma treatment time. More notably, a major structural change was observed 5 min after the plasma treatment. Therefore, fundamental information on the relationship among amalgamation process, plasma treatment time, structural change, and LSPR peak and linewidth is provided at the single-particle level.

Graphical abstract: Single-particle study: effects of mercury amalgamation on morphological and spectral changes in anisotropic gold nanorods

Supplementary files

Article information

Article type
Communication
Submitted
17 Jan 2022
Accepted
25 Feb 2022
First published
25 Feb 2022

Analyst, 2022,147, 1066-1070

Single-particle study: effects of mercury amalgamation on morphological and spectral changes in anisotropic gold nanorods

J. Lee, G. W. Kim and J. W. Ha, Analyst, 2022, 147, 1066 DOI: 10.1039/D2AN00104G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements