Issue 7, 2022

Homogeneous assays for aptamer-based ethanolamine sensing: no indication of target binding

Abstract

Ethanolamine is an important analyte for environmental chemistry and biological sciences. A few DNA aptamers were previously reported for binding ethanolamine with a dissociation constant (Kd) as low as 9.6 nM. However, most of the previous binding assays and sensing work used either immobilized ethanolamine or immobilized aptamers. In this work, we studied three previously reported DNA sequences, two of which were supposed to bind ethanolamine while the other could not bind. Isothermal titration calorimetry revealed no binding for any of these sequences. In addition, due to their guanine-rich sequences, thioflavin T was used as a probe. Little fluorescence change was observed with up to 1 μM ethanolamine. Responses within the millimolar range of ethanolamine were attributed to the general fluorescence quenching effect of ethanolamine instead of aptamer binding. Finally, after studying the adsorption of ethanolamine to gold nanoparticles (AuNPs), we confirmed the feasibility of using AuNPs as a probe when the concentration of ethanolamine was below 0.1 mM. However, no indication of specific aptamer binding was observed by comparing the three DNA sequences for their color changing trends. This work articulates the importance of careful homogeneous binding assays using free target molecules.

Graphical abstract: Homogeneous assays for aptamer-based ethanolamine sensing: no indication of target binding

Supplementary files

Article information

Article type
Paper
Submitted
21 Jan 2022
Accepted
11 Feb 2022
First published
11 Feb 2022

Analyst, 2022,147, 1348-1356

Homogeneous assays for aptamer-based ethanolamine sensing: no indication of target binding

Y. Ding, X. Liu, P. J. Huang and J. Liu, Analyst, 2022, 147, 1348 DOI: 10.1039/D2AN00145D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements