Application of an alkali destruction technique and natural deep eutectic solvent for greener extraction from peanut shells: optimization and extraction kinetics study†
Abstract
Peanut shells are an agricultural by-product rich in flavonoids, but their utilization is not high at present. This research developed a method for the rational utilization of flavonoids in peanut shells, which could enhance the comprehensive utilization of peanut resources. A green and efficient natural extraction technique based on a natural deep eutectic solvent (NADES) and alkaline destruction was exploited for the extraction of the flavonoids from peanut shells. NADES synthesized with DL-menthol (Me) and DL-lactic acid (LA) was selected as the solvent. KOH was used as a destructive agent that could destroy the structure of Me/LA, which could aid not only recovering the flavonoids, but also aid Me recovery and recycling. The NADES with the molar ratio of Me to LA of 1 : 4 showed a higher extraction capacity for flavonoids and better maintenance of antioxidant activity than water and ethanol. The maximum extraction efficiency was 23.33 mg rutin equivalents per g. In addition, the mass-transfer kinetics model of flavonoids extraction was established using Fick's second law, which well fitted the experimental results and proved that the temperature had a significant effect on the extraction efficiency. These results offered some insights for the research and exploitation of an environmentally friendly method to extract bio-active flavonoids for future applications in actual industrial manufacturing.