Iodide etching for one-step quantitative assay of the number of DNA molecules capped on gold nanoparticles†
Abstract
Developing a direct method to easily quantify the number of DNA capped on gold nanoparticles (GNPs) is of great significance. Herein, we found that the high concentration of iodine ion (Iā) can not only replace the ligands on the surface of GNPs but can also completely etch the particles by virtue of its strong reducibility. According to this finding, a mild, cost-effective, environment-friendly, and non-toxic strategy was constructed to directly and accurately estimate the amount of DNA coupled on GNPs. Due to nanometal surface energy transfer (NSET) that happened between the DNA-FAM donor and the GNPs receptor, the fluorescence was quenched; after incubating with the etching reagent 6 M Iā, the recuperative fluorescence was detected directly. This method can easily estimate the number of DNA attached on the GNPs surface by one step. In a nutshell, it is a smart strategy to apply iodide etching for DNA quantification on the surface of GNPs, which breaks through the drawbacks of traditional DNA quantification strategies such as pollution, being expensive and even dangerous. This strategy takes a solid step forward for the refinement and optimization of DNA quantification and can also be more effective in detecting the number of other molecules capped on the GNPs surface, indicating that the iodide etching method is greatly helpful in bio-detection assays and nanoparticle-based therapeutics.