COF-43 based voltammetric sensor for Ag(i) determination: optimization of experimental conditions by Box–Behnken design
Abstract
Hydrazone-linked covalent organic framework-43 (COF-43) was synthesized and the carbon paste electrode (CPE) modified with this COF was used as a voltammetric sensor to measure silver(I). Various characterization tests (XRD, FTIR, BET, SEM/EDX, electrochemical impedance (EIS), and cyclic voltammetry (CV)) were performed on the synthesized COF-43 and the prepared COF-43/CPE. Box–Behnken design was used to optimize the preparation and operation conditions of the sensor. EIS and CV investigations reveal the diffusive characteristics of silver transport in the electrode matrix. An appropriate mechanism for the sensor procedure has been suggested and ratified by electrochemical and SEM/EDX techniques. The COF-43 used has several recognition elements for the selective binding of silver ion and due to its high porosity provides a large space for the deposition and reduction of large amounts of silver. Therefore, due to the correct selection of COF used in the construction of the sensor, high selectivity and sensitivity for the prepared sensor has been achieved. The obtained data disclosed that the modification of the carbon paste electrode by COF-43 significantly improves the analytical characteristics of the sensor, which specifies the performance of COF-43 as a sensory material for determining silver(I). The obtained calibration curve is linear in the concentration range from 0.001 μM to 10.0 μM and the detection limit is 1.5 × 10−10 M. Various statistical tests have been employed to evaluate the sensor performance. The appropriate accuracy and precision of the proposed method were confirmed using the analysis of variance (ANOVA) approach. Potential interferences were investigated and it was found that the other species did not have a significant effect on the sensor performance. The prepared sensor has been successfully used to measure silver in two samples of photographic effluents, bleaching, and fixing agents. The results from the analysis of real samples demonstrate the reliable applicability of the fabricated sensor.