Inner filter effect-based upconversion fluorescence sensing of sulfide ions
Abstract
Upconversion nanocrystals (UCNCs) have emerged as a new type of fluorescent probe for sensing applications. Herein, we designed a 980 nm excited upconversion luminescence system, composed of core–shell-structured NaYF4 : Yb,Er@NaYF4 : Yb nanocrystals (csUCNCs) and the triethylenetetramine–Cu complex (complex-I), for quantitative detection of sulfide ions. Taking advantage of the specific recognition of complex-I toward S2−, the as-formed compound (complex-II) exhibits excellent spectral overlap not only in the range of fluorescence emissions of UCNCs but also in the excitation wavelength for UCNCs; fluorescence quenching of UCNCs occurs where the complex-II acts as the energy acceptor. Due to the electrostatic repulsion between positively charged ligand-free csUCNCs and complex-I, the fluorescence quenching is based on the primary and secondary inner filter effect rather than the fluorescence resonance energy transfer process. The detection limit of S2− for the upconversion-based system is calculated to be 2.7 μM, exhibiting higher detection sensitivity over the single complex-I compound measured by the spectrophotometric method. Moreover, no significant variation in upconversion luminescence is observed upon the addition of other interfering ions, showing the excellent selectivity of this nanoprobe toward S2−.