Issue 2, 2022

Polydopamine-assisted decoration of Se nanoparticles on curcumin-incorporated nanofiber matrices for localized synergistic tumor-wound therapy

Abstract

The management of surgical wounds incurred during tumor removal procedures has become a non-negligible issue. Herein, for the first time, an implantable polymer-based nanofiber matrix is developed for postoperative tumor management by promoting wound healing and preventing cancer recurrence. The multifunctional matrix is successfully prepared by assembling chitosan-stabilized Se nanoparticles (SeNPs) at the surface of polydopamine (PDA) modified poly(ε-caprolactone)/curcumin fibres (PCL/CUR), denoted as PCL/CUR/PDA@Se. In this system, PDA as functionalized layers coated onto the PCL/CUR surface favors the effective immobilization of SeNPs through a covalent bond, as well as acts as a gatekeeper guaranteeing the sustained release of CUR. The CUR/SeNPs present excellent antitumor efficacy, respectively, which supports the nanocomposite matrix to efficiently kill cancer cells in vitro by inducing mitochondrial dysfunction caused by the ROS overproduction, and significantly suppressing the tumor growth in vivo. Additionally, due to the synergistic antioxidant activity of CUR and SeNPs, the nanofibrous matrix distinctly facilitates the adhesion and proliferation of normal fibroblast cells, and simultaneously accelerates wound healing during tumor treatments in tumor-bearing mice. These results suggest that the PCL/CUR/PDA@Se matrix with bifunctional properties is a promising candidate for local tumor-wound therapy. This work offers an innovative strategy to develop new improved post-surgery therapies for cancer patients.

Graphical abstract: Polydopamine-assisted decoration of Se nanoparticles on curcumin-incorporated nanofiber matrices for localized synergistic tumor-wound therapy

Supplementary files

Article information

Article type
Paper
Submitted
18 Oct 2021
Accepted
15 Nov 2021
First published
30 Nov 2021

Biomater. Sci., 2022,10, 536-548

Polydopamine-assisted decoration of Se nanoparticles on curcumin-incorporated nanofiber matrices for localized synergistic tumor-wound therapy

M. Zhang, J. Zhang, S. Ran, W. Sun and Z. Zhu, Biomater. Sci., 2022, 10, 536 DOI: 10.1039/D1BM01607E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements