Issue 10, 2022

Self-immolative polyplexes for DNA delivery

Abstract

Nucleic acids have immense potential for the treatment and prevention of a wide range of diseases, but delivery vehicles are needed to assist with their entry into cells. Polycations can reversibly complex with nucleic acids via ionic interactions to form polyplexes and transport them into cells, but they are still hindered by the need to balance cytotoxicity and delivery effectiveness. In this work, we describe a new self-immolative polyglyoxylamide (PGAm) platform designed to address these challenges by complexing nucleic acids via multivalent interactions in the polymeric form and releasing them upon depolymerization. Nine PGAms were synthesized and characterized, with different end-caps and variable cationic pendent groups. The PGAms underwent depolymerization under mildly acidic conditions, with rates dependent on their pendent groups and end-caps. They complexed plasmid DNA, forming cationic nanoparticles, and released it upon depolymerization. Cytotoxicity assays of the PGAms and polyplexes in HEK 293T cells showed a decrease in toxicity following depolymerization, and all samples exhibited much lower toxicity than a commercial non-degradable linear polyethyleneimine (jetPEI) transfection agent. Transfection assays revealed that selected PGAms provided similar levels of reporter gene expression to jetPEI in vitro with a PGAm analogue of poly[2-(dimethylamino)ethyl methacrylate] having particularly interesting activity that was dependent on depolymerization, along with low cytotoxicity. Overall, these results indicate that end-to-end depolymerization of self-immolative polymers can provide a new and promising tool for nucleic acid delivery.

Graphical abstract: Self-immolative polyplexes for DNA delivery

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2021
Accepted
11 Feb 2022
First published
15 Feb 2022

Biomater. Sci., 2022,10, 2557-2567

Self-immolative polyplexes for DNA delivery

Q. E. A. Sirianni, T. Wang, A. Borecki, Z. Deng, J. A. Ronald and E. R. Gillies, Biomater. Sci., 2022, 10, 2557 DOI: 10.1039/D1BM01684A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements