Issue 20, 2022

Enhanced ectopic bone formation by strontium-substituted calcium phosphate ceramics through regulation of osteoclastogenesis and osteoblastogenesis

Abstract

To explore how strontium influences osteoclastogenesis and osteoblastogenesis during material-induced ectopic bone formation, porous strontium-substituted biphasic calcium phosphate (Sr-BCP) and BCP ceramics with equivalent pore structures and comparable grain size and porosity were prepared. In vitro results showed that compared with BCP, Sr-BCP inhibited the osteoclastic differentiation of osteoclast precursors by delaying cell fusion, down-regulating the expression of osteoclast marker genes, and reducing the activity of osteoclast specific proteins, possibly due to the activated ERK signaling pathway but the suppressed p38, JNK and AKT signaling pathways. Meanwhile, Sr-BCP promoted the osteogenic differentiation of mesenchymal stem cells (MSCs) by up-regulating the osteogenic gene expression. Sr-BCP also mediated the expression of important osteoblast–osteoclast coupling factors, as evidenced by the increased Opg/Rankl ratio in mMSCs, and the reduced Rank expression and enhanced EphrinB2 expression in osteoclast precursors. Similar results were observed in an in vivo study based on a murine intramuscular implantation model. The sign of ectopic bone formation was only seen in Sr-BCP at 8 weeks. Compared to BCP, Sr-BCP obviously hindered the formation of TRAP- and CTSK-positive multinucleated osteoclast-like cells during the early implantation time up to 6 weeks, which is consistent with the in vivo PCR results. This suggested that Sr-BCP could clearly accelerate the ectopic bone formation by promoting osteogenesis but suppressing osteoclastogenesis, which might be closely related to the expression of osteoblast–osteoclast coupling factors regulated by Sr2+. These findings may help in the design and fabrication of smart bone substitutes with the desired potential for bone regeneration through modulating both osteoclastic resorption and osteoblastic synthesis.

Graphical abstract: Enhanced ectopic bone formation by strontium-substituted calcium phosphate ceramics through regulation of osteoclastogenesis and osteoblastogenesis

Supplementary files

Article information

Article type
Paper
Submitted
08 Mar 2022
Accepted
12 Aug 2022
First published
20 Aug 2022

Biomater. Sci., 2022,10, 5925-5937

Enhanced ectopic bone formation by strontium-substituted calcium phosphate ceramics through regulation of osteoclastogenesis and osteoblastogenesis

F. Chen, L. Tian, X. Pu, Q. Zeng, Y. Xiao, X. Chen and X. Zhang, Biomater. Sci., 2022, 10, 5925 DOI: 10.1039/D2BM00348A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements