Mussel-inspired multifunctional hydrogel dressing with hemostasis, hypoglycemic, photothermal antibacterial properties on diabetic wounds†
Abstract
To meticulously establish an efficient photothermal multifunctional hydrogel dressing is a prospective strategy for the treatment of diabetic chronic wounds. Herein, glucose oxidase (GOx) was added to polydopamine/acrylamide (PDA/AM) hydrogels to reduce hyperglycemia to a normal level (3.9–6.1 mmol L−1) and enhance compressive properties (55 kPa) and adhesive properties (32.69 kPa), which are capable of hemostasis in the wound. Then, MnO2 nanoparticles were encapsulated into a polydopamine/acrylamide (PDA/AM) hydrogel, endowing it with excellent antibacterial properties (E. coli and S. aureus were 97.87% and 99.99%) under the irradiation of 808 nm NIR; meanwhile, the biofilm was eliminated completely. Besides, O2 was generated (18 mg mL−1) by the decomposition of H2O2 under the catalysis of MnO2, which could accelerate the formation of angiogenesis and promote the crawling and proliferation of cells. Furthermore, the diabetic wound in vivo treated with the PDA/AM/GOx/MnO2 hydrogel had a less inflammatory response and faster healing speed, which was completely healed in 14 days. Therefore, the multifunctional hydrogels with the capability of high compressible, hemostasis, antibacterial, hyperglycemia manipulation, and O2 generation, demonstrate promise in diabetic chronic wound dressing.