Advances in hybrid peptide-based self-assembly systems and their applications†
Abstract
Self-assembly of peptides demonstrates a great potential for designing highly ordered, finely tailored supramolecular arrangements enriched with high specificity, improved efficacy and biological activity. Along with natural peptides, hybrid peptide systems composed of natural and chemically diverse unnatural amino acids have been used in various fields, including drug delivery, wound healing, potent inhibition of diseases, and prevention of biomaterial related diseases to name a few. In this review, we provide a brief outline of various methods that have been utilized for obtaining fascinating structures that create an avenue to reproduce a range of functions resulting from these folds. An overview of different self-assembled structures as well as their applications will also be provided. We believe that this review is very relevant to the current scenario and will cover conformations of hybrid peptides and resulting self-assemblies from the late 20th century through 2022. This review aims to be a comprehensive and reliable account of the hybrid peptide-based self-assembly owing to its enormous influence in understanding and mimicking biological processes.