Issue 15, 2022

An acid-triggered BODIPY-based photosensitizer for enhanced photodynamic antibacterial efficacy

Abstract

Photodynamic inactivation of bacteria has emerged as a promising antibacterial strategy due to its high antibacterial activity and low bacterial resistance. Herein, an acid-triggered photodynamic antibacterial nanoplatform (IBPAAs) was constructed by co-assembly of an acid-triggered photosensitizer BODIPY (I-NBDP) and the POEGMA-b-PDEAEMA block copolymer for enhancing the antibacterial efficacy and biofilm-dissipation capability. IBPAAs could have great biocompatibility and stability by the formation of self-assemblies, and it could be cleaved to release the I-NBDP photosensitizer under a dual-step acidic response due to the protonation of the diethylamino groups on both I-NBDP and the POEGMA-b-PDEAEMA block copolymer. On the one hand, the photoinduced electron transfer (PET) of I-NBDP in IBPAAs under neutral conditions could be attenuated, resulting in an increase of its 1O2 yield, effectively improving its photodynamic antibacterial efficacy. On the other hand, the protonation of IBPAAs made it easier to target negatively charged bacterial surfaces, further enhancing its photodynamic antibacterial activity. The antibacterial experiments in vitro showed that the IBPAAs assemblies had great photodynamic antibacterial efficacy and biofilm dissipation capability, and it could effectively relieve bacterial infection of wounds and accelerate wound healing in vivo. Therefore, this acid-triggered strategy is expected to provide a new path for enhanced photodynamic antibacterial therapy.

Graphical abstract: An acid-triggered BODIPY-based photosensitizer for enhanced photodynamic antibacterial efficacy

Supplementary files

Article information

Article type
Paper
Submitted
19 May 2022
Accepted
11 Jun 2022
First published
13 Jun 2022

Biomater. Sci., 2022,10, 4235-4242

An acid-triggered BODIPY-based photosensitizer for enhanced photodynamic antibacterial efficacy

X. Liang, L. Xia, Y. Zhu, C. Zhang, F. Gong and W. Zhang, Biomater. Sci., 2022, 10, 4235 DOI: 10.1039/D2BM00780K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements