Issue 19, 2022

A polymeric IDO inhibitor based on poly(ethylene glycol)-b-poly(l-tyrosine-co-1-methyl-d-tryptophan) enables facile trident cancer immunotherapy

Abstract

Indoleamine 2,3-dioxygenase (IDO), with an immunoregulatory effect related to tryptophan metabolism, has emerged as an attractive target for cancer immunotherapy. Here, a polymeric IDO inhibitor based on the poly(ethylene glycol)-b-poly(L-tyrosine-co-1-methyl-D-tryptophan) copolymer (PEG-b-P(Tyr-co-1-MT)) was developed for facile trident cancer immunotherapy. PEG-b-P(Tyr-co-1-MT) could self-assemble into nanoparticles (NPs), which were subject to enzyme degradation and capable of retarding the metabolism of L-tryptophan (TRP) to L-kynurenine (KYN) in B16F10 cancer cells. Notably, cRGD-functionalized NPs showed efficient encapsulation and an enzyme-responsive release of doxorubicin (DOX) and the BET bromodomain inhibitor JQ1. DOX in drug-loaded nanoparticles (cRGD-NPDJ) could activate immunization by inducing the discernible immunogenic cell death (ICD) of cancer cells and promoting the secretion of interferon-γ (IFN-γ), which besides activating the antitumor cellular immunity often upregulates the expression of PD-L1 and IDO to accelerate tumor progression. The encapsulated JQ1 and polymeric 1-MT in cRGD-NPDJ could reverse the expression by disrupting the binding of BET proteins with chromatin and elevating the TRP/KYN ratio. In B16F10 tumor-bearing C57BL/6 mice, cRGD-NPDJ displayed significantly increased CD8+ T cells, matured dendritic cells (mDCs), and cytokines (IFN-γ, TNF-α), as well as reduced regulatory T cells and downregulated PD-L1 expression at tumor sites, generating immune cascade reactions and a distinct improvement of the tumor microenvironment (TME), leading to significant tumor suppression and survival prolongation. The polymeric IDO inhibitor provides a facile strategy for the co-delivery of chemotherapeutics and inhibitors for efficient and safe combination cancer immunotherapy.

Graphical abstract: A polymeric IDO inhibitor based on poly(ethylene glycol)-b-poly(l-tyrosine-co-1-methyl-d-tryptophan) enables facile trident cancer immunotherapy

Supplementary files

Article information

Article type
Paper
Submitted
27 Jul 2022
Accepted
16 Aug 2022
First published
30 Aug 2022

Biomater. Sci., 2022,10, 5731-5743

A polymeric IDO inhibitor based on poly(ethylene glycol)-b-poly(L-tyrosine-co-1-methyl-D-tryptophan) enables facile trident cancer immunotherapy

Y. Liu, J. Xie, X. Zhao, Y. Zhang, Z. Zhong and C. Deng, Biomater. Sci., 2022, 10, 5731 DOI: 10.1039/D2BM01181F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements