Issue 23, 2022

Ag NCs as a potent antibiofilm agent against pathogenic Pseudomonas aeruginosa and Acinetobacter baumannii and drug-resistant Bacillus subtilis by affecting chemotaxis and flagellar assembly pathway genes

Abstract

Biofilm infections are highly resistant to commercial antibiotics. Therefore, developing a potent agent against such drug-resistant bacterial infections is highly desirable. Here, we synthesized positively charged silver nanoclusters (Ag NCs) with a diameter of <2 nm, which were found to be very effective antibacterial and antibiofilm agents against tetracycline-resistant Bacillus subtilis and most importantly multidrug-resistant pathogenic strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Ag NCs were able to both prevent and eradicate the biofilm formation very effectively. The antibiofilm activity can be significantly increased with α-amylase and/or DNase which degrade the structural components of biofilms. The antibiofilm activity of antibiotics gets considerably lowered due to poor penetration and the acidic microenvironment of biofilms. However, the potency of antibiotics gets significantly increased when applied with Ag NCs. Finally, RNA seq-based analysis has demonstrated that the biofilm degradation was likely due to the regulation of bacterial chemotaxis and flagellar assembly pathway genes by Ag NCs.

Graphical abstract: Ag NCs as a potent antibiofilm agent against pathogenic Pseudomonas aeruginosa and Acinetobacter baumannii and drug-resistant Bacillus subtilis by affecting chemotaxis and flagellar assembly pathway genes

Supplementary files

Article information

Article type
Paper
Submitted
30 Aug 2022
Accepted
15 Oct 2022
First published
31 Oct 2022

Biomater. Sci., 2022,10, 6778-6790

Ag NCs as a potent antibiofilm agent against pathogenic Pseudomonas aeruginosa and Acinetobacter baumannii and drug-resistant Bacillus subtilis by affecting chemotaxis and flagellar assembly pathway genes

A. Singh, K. Rani, V. Tandon, A. K. Sahoo and S. K. Samanta, Biomater. Sci., 2022, 10, 6778 DOI: 10.1039/D2BM01399A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements