Orthogonal reactivity and interface-driven selectivity during cation exchange of heterostructured metal sulfide nanorods†
Abstract
We report predictive guidelines for the substoichiometric cation exchange of model two-component metal sulfide nanorods containing divalent cations of similar hardness. Unit cell volume changes, cation radii, solubility constants, and solid state interfaces influence selectivity during substoichiometric exchange of Cu+ when multiple products are possible.