Substrate induced freezing, melting and depinning transitions in two-dimensional liquid crystalline systems†
Abstract
We use molecular dynamics simulations to investigate the ordering phenomena in two-dimensional (2D) liquid crystals over the one-dimensional periodic substrate (1DPS). We have used Gay-Berne (GB) potential to model the interaction between a pair of liquid crystalline (LC) particles. The underlying substrate potential with which the GB particles interact varies sinusoidally in one direction only. At a given temperature and density of the GB system, we varied the substrate's periodicity (as) but fixed the substrate strength. We observed that with a small value of as, an underlying substrate helps to stabilize a disordered LC nematic phase to a 2D solid phase. However, for an intermediate range of as, the system melts and transitions to a modulate-smectic. Finally, with a further increase in as, the system undergoes a structural depinning transition and returns to an LC nematic phase like a free system with no substrate. We argue that a three-way interplay of the energies arising from orientation-dependent particle–particle and particle–substrate interaction makes it possible for the system to undergo substrate–periodicity-dependent multiple phase transitions in the GB LC system.